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Abstract 
Groundwater recharge is crucial for managing 

freshwater resources and has become a global issue 

due to climatic changes, particularly in arid and semi-

arid areas.  This study uses machine-learning 

algorithms (MLA) to facilitate groundwater 

potentiality mapping (GWPM) via spatial modeling. 

For high precision, Extreme Gradient Boosting (XGB) 

and Random Forest (RF) have been tested for GWPM. 

For this reason, a database of springs and well 

inventories have been prepared and randomly divided 

into 75% for training and 25% for model validation. 

GWPM is also statistically linked to various relevant 

factors conditioning groundwater recharge including 

LS factor, elevation, MRVBF, curvature, NDVI, NDWI, 

TWI, drainage density, distance to the river, rainfall, 

permeability and fault density.  

 

Validating GWP models uses the receiver operating 

characteristic curve (ROC-AUC). The results show 

that RF (AUC=0,995) and XGB (AUC=0,990) are 

included in excellent class based on the ROC curve 

method. Furthermore, GWPMs are efficient techniques 

for sustainable groundwater resource management. 
 
Keywords: Groundwater potentiality, Ouled Bousbaa, 

Machine-learning Algorithms, Random Forest, Extreme 

Gradient Boosting. 

 

Introduction 
One of the primary objectives of development projects 

globally is to ensure access to safe drinking water 59. In many 

developing nations, groundwater is the preferred source for 

supplying potable water due to its superior quality. As such, 

a comprehensive understanding of groundwater storage and 

reserves is essential to inform and optimize hydrogeological 

exploration efforts12. Groundwater is a highly valuable 

resource with a potential global need because of its 

importance and intensive daily consumption34,45,51,55. It 

accounts for a large portion (about 96%) of all available 

freshwater resources and may be most essential in arid 

regions where there is little surface water28,45.  

 

The detailed investigation of water scarcity through different 
studies, warns that in the coming years, water scarcity could 

affect 27 countries including Morocco2,5,31. To preserve 

groundwater reserves in the face of depletion, natural and 

artificial recharge of aquifers is gaining 

importance6,29,41,46,48,60,62. Groundwater potential modeling 

has not gained much importance, unlike its prospective 

modeling23. Exploration of groundwater potential areas 

promotes the continuity of water resources and significantly 

facilitates the preparation of a strategic plan to improve the 

quality and management of groundwater resources50. 

Innovative machine learning algorithms have been applied 

in predictive modeling to develop highly accurate 

models26,36.  

 

In addition to classical modeling methods, Random Forest 

and XGB are powerful predictive modeling algorithms that 

can adapt to different variables and handle missing values 

and relationships between predictors15,57. The ROC curve is 

used to compare and validate the predictive accuracy of 

generated models. Machine learning is gaining widespread 

popularity because of its ability to predict variables such as 

groundwater potential, solely from historical data sets. The 

goal is to equip communities and decision-makers with a 

database and a collection of maps to manage drinking water 

resources effectively. 

 

Study Area  
The Ouled Bousbaa basin is a vast Eocene-Cretaceous 

synclinal area covered by Plio-Quaternary extending over an 

area of about 4640 Km² (Fig. 1). Several aquifer systems 

characterize this basin, limited to the south by the mountains 

of the Western High Atlas, to the north by the Jarfa 

Mountain, to the east by a tributary of the Oued Chichaoua 

and to the west by the synclinal basin of Essaouira. The 

Jurassic and the Cretaceous dominate respectively the north 

and the south of the area, while the Eocene, the Mio-Pliocene 

and the Quaternary are found in the central region. There are 

also quaternary formations in the bed of the main river, 

Tensift. The climate of the study area is arid in the plain and 

semi-arid in the mountain parts. Ouled Bousbaa has been 

divided into several communes that are expanding or being 

settled and have a large population in terms of water use. 

 

Material and Methods 
Material and Data: Groundwater mapping using machine-

learning algorithms requires a dataset and several techniques 

for successful modeling (Fig. 2). In this study, a diagram of 

1874 water points was randomly separated into two parts. 
75% is used for model training and the remaining 25% is for 

model validation25. 
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Fig. 1: Geographical location of the study area Ouled Bousbaa 

 

 
Fig. 2: Flowchart of the methodology adopted in the present study 
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A global digital elevation model (spatial resolution: 12.5 

meters) was used to extract climatic and hydrologic 

topographic parameters and SRTM (30-meter resolution) 

and Landsat8 Operational Land Imager (OLI) collection-2 

level-2 images were acquired via download from the United 

States Geological Survey (USGS). Hydroclimatic data 

consisting of annual rainfall from 1960 to 2016 and 

streamflow from 1994 to 2016 was measured in the stations 

owned by and near the study area. The utilization of remote 

sensing and GIS technology enabled the pinpointing of 

boreholes with minimal uncertainty, but additional 

techniques were recommended, especially for water 

exploration37.  

 

Several GIS software packages were used to process this 

dataset. ENVI and q-gis software ere used for lineament 

extraction and digitization while Arc-gis and Saga-gis are 

used to make the different maps of groundwater storage 

parameters to generate models representing groundwater 

potential by adopting the programming language R 

(Foundation for Statistical Computing). 

 

Groundwater Inventory: Within the framework of this 

study, an inventory graph of 1874 points was collected 

generally based on reference to historical records of various 

resources and a detailed site inspection. A random separation 

of the entire groundwater and non-groundwater (spring) 

database was grouped into 75% (1474 points) and 25% (404 

points) as training and testing datasets (Fig. 3). The 

distribution of this dataset covers almost the entire area of 

Ouled Bousbaa, which favors the feasibility of modeling 

with a low failure rate. The groundwater and non-

groundwater training datasets are used for model training, 

while the testing datasets are devoted to the validation of 

GPM model25.  

   

Methodology of the study: Hydrological modeling of 

groundwater potential requires the creation of a 

hydrogeological database representative the study area 

(morphology, geology, climatology etc.). The methodology 

adopted in this study includes multiple phases which are 

presented schematically in fig. 2. The approach begins with 

the preparation of the water point inventory (boreholes, 

springs etc.). Then the identification and classification of 

factors related to the storage of groundwater were made and 

their thematic maps were created based on sources of 

available data (Hydrogeological, Climatic etc). These 

factors are used to develop the groundwater potentiality 

model to show the availability of water and how it can be 

used. Then the production of these models by applying 

approaches was based on machine learning algorithms. 

Finally, the validation of the results was done using the ROC 

method by calculating the air under the curve.  

 

 
Fig. 3: Location of datasets inventory analysed in this study (training and testing dataset) 
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Preparation of Thematic Maps of conditioning Factors: 

Thematic maps of causative factors were created by utilizing 

Saga-gis, Envi, SNAP, arc-gis and q-gis software to extract 

and collect a comprehensive database to produce final 

models of groundwater potentiality. For this objective, 

groundwater conditioning factors must be well chosen, 

because of their direct influence on the predictive analysis of 

machine learning algorithms39. Several variables were 

targeted including topographic, geologic, hydrologic, 

climatic and land cover factors (Fig. 4). Their thematic maps 

are created using a shapefile to delineate the study area and 

to apply a classification using the "unsupervised 

classification" extension in a GIS environment3, 49. This 

method aims to organize an image into several spectral 

classes united and combined to give them a thematic 

meaning8. 

 

Methodology of Groundwater Potentiality Mapping 

Random Forest: The researchers Breiman7 and Golkarian 

et al19 introduced the RF algorithm as a classification and 

regression system based on binary decision trees. It allows 

for the analysis of many parameters through a statistical 

approach18,42,63, the creation of multiple trees from a random 

bootstrap and using the RF algorithm parameters7, 30.

 

 
Fig. 4: Maps of the analysis of conditioning factors for groundwater recharge: (a) Elevation, (b) MRVBF,  

(c) Distance to river, (d) Drainage density, (e) Curvature, (f) Rainfall, (g) TWI, (h) Permeability, (i) NDWI,  

(j) NDVI, (k) Fault density and (l) LS Factor 
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It is also used to analyze nonlinear and hierarchical 

interactions between response and explanatory variables, 

using a huge database with good predictions for new 

cases36,44. The RF algorithm requires tuning the number of 

trees and variables and the maximum number of nodes as 

follows24,58: 

 

h (x,ik), k=1, 2, . . . n                   (1) 

 

whee ik are factors that control groundwater storage and 1, 

2, 3, 4, 5, 6, 7, ... n are input vectors x. The general errors in 

modeling by the RF algorithm are determined as follows27: 

 

GE =Px,y ( mg (x,y) < 0 )               (2) 

 

where x and y are factors controlling groundwater storage 

and mg is the margin function. 

 

Extreme Gradient Boosting: The XGB algorithm was 

developed by Chen and Guestrin10. It is a recent application 

of gradient boosting machines. XGB is used for 

classification problems and also regression. It is often used 

by researchers because of its high running speed10 and also 

adjusts the modeling variables without affecting the 

objective model based on boosting from machine learning14. 

The execution of this algorithm starts by producing an initial 

learner from the database of all groundwater conditioning 

parameters. The process continues until the last indices to 

make the final model14. XGB also uses trials to reduce the 

required computation time14, 33 furthermore when using a full 

database. It can become stronger compared to other 

algorithms. In the case of our study, to apply XGB, the caret 

package is used in the software of statistical calculations R. 

 

ROC Curve Validation and AUC Analysis: The accuracy 

of the modeling predictions was confirmed by using a 

validation database to evaluate the results of the applied 

algorithms1,16,21,22,43,54,56. The ROC curve has been widely 

used by researchers to evaluate the efficiency and 

performance of machine learning models, as well as to assess 

the analytical capability and strength of machine learning 

algorithms. This evaluation is typically performed by 

analyzing the area under the ROC curve (AUC), which 

indicates the accuracy and high performance of the model. 

When we talk about a high AUC value (AUC greater than 

0.7), it automatically reflects the effectiveness of the 

model35,47,52,53.  

 

In this investigation, the ROC curve was used to evaluate the 

predictive accuracy of the RF and XGB models. It is created 

with specificity (true positive rate) and sensitivity (false 

positive rate) on both the X-axis and Y-axis respectively, to 

evaluate the accuracy of the model’s results of groundwater 

recharge11,20,25. Specific accuracy indices were created for 

each element of the ROC curve to assess the accuracy of the 
groundwater potential model47. This ROC curve-based 

validation approach identifies five ranks of area-under-the-

curve (AUC) zonation values to gain a better understanding 

of the performance level. According to Yesilnacar61, the 

ROC_AUC category magnitudes are as follows: Excellent 

(0.90 - 1.00), Good (0.80 - 0.90), Fair (0.70 - 0.80), Poor 

(0.60 - 0.70), Fail (0.50 - 0.60). 

 

Results 
Application of RF and XGB Algorithms: The exploration 

of the high groundwater potential areas in this study was 

carried out using several techniques to collect a complete set 

of data. Then, the created database is imported to the 

statistical software R to apply the machine learning 

algorithms Random Forest and XGB. After an essential 

phase of preprocessing which facilitates and guarantees a 

good predictive analysis with the least error rate, a reliable 

groundwater potential model was used. 

 

Validation of Groundwater Potential Models: According 

to several researchers52,53, the higher is the area under the 

curve, the more accurate is the predictive analysis 

(significant level 0.5) and is therefore, a successful 

groundwater recharge model. The ROC curve is used to 

determine the accuracy of the models by calculating the 

AUC and the significant level of the ROC curve to validate 

the accuracy of the models. The AUC site calculated using 

the ROC curve confirmed the acceptability of both models 

with good performance, as they show a value above 80% 

indicating the accuracy of the model prediction. The 

groundwater potential modeling results are statistically 

significant in this study. The models RF and XGB performed 

better in the test, their AUCs are 0.995 _ 0.990 (Fig. 5). 

 

Groundwater Potential Maps: The groundwater 

potentiality maps of the two models for the Ouled Bousbaa 

region were classified into five categories with the method 

of classification of natural breaks according to their potential 

in zones: Very low, Low, Moderate, High, Very high. 

 

The present model, which was generated utilizing the 

Random Forest algorithm, demonstrates that areas with a 

significant and elevated groundwater potential comprise the 

majority of the area (ranging from 60% to 65%) and are 

generally situated in the central part of the basin, at the level 

of the basin and further downstream, north of Ouled 

Bousbaa.  Although the areas with low and very low 

groundwater potential cover a relatively small portion of the 

region (30%), they are situated in the upstream areas, 

characterized by steep slopes and high runoff, which limits 

infiltration (Fig. 6a). 

 

The groundwater potential models created using the 

advanced XGB algorithm demonstrate that areas of very 

high to high potential cover a large portion of the study area, 

with a significant concentration in the northern part of Ouled 

Bousbaa. In contrast, regions with very low to low 

groundwater potential are primarily situated in the southern 

part, characterized by mountainous terrain and pronounced 

relief (Fig. 6b). 
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Table 1 

Parameters of the used machine learning algorithms for GWPM 

Model Description of the parameters of the algorithms 

RF Number of Tree-500, Node size-13, Seed-10, Importance-True 

XGBoost Number of integration-200, max depth-6, minim number-2, Learning rate-0.3, 

Subsample-1 

 

 
Fig. 5: Validation of Groundwater Potentiality Maps using ROC 

 

 
Fig. 6: The Groundwater Potentiality Maps produced by the RF (a) and XGBoosting (b) model 

 

Confirmation of the Usability of Groundwater Potential 

Models: The validation of the groundwater potential models 

was conducted by comparing the coordinates of water points 

and springs, which were categorized into three distinct 

intervals based on their flow rates. A comprehensive 

analysis reveals that the flow rates of both springs and wells 

correlate strongly with the groundwater potential classes 

identified in the generated models. Specifically, springs 

exhibiting high flow rates are predominantly situated in 

high-potential zones, while those with lower flow rates are 
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generally found in low-potential areas, with only a few 

exceptions (Fig. 7). Therefore, according to the analysis of 

the projected boreholes on the final models, 

 

- 80% of the wells and springs with high flow rates are 

located in areas of high to very high potential 

- 20% to 25% of the wells with low flow rates are located in 

areas of low to medium potential 

 

As a result, the models developed are satisfactory according 

to the test of confirming exploitability by springs and wells 

flow rates. 

 

Discussion 
The global scarcity of groundwater reserves is generally 

related to resource accessibility and management, implying 

a global need to accurately identify potential areas using 

algorithmic prediction. This is to cope with the water stress 

that is expected to affect most of the world's inhabitants in 

the coming years13. In this study, the problem to solve is the 

accurate identification of potential groundwater areas using 

dual machine learning algorithms including RF and XGB. 

The effective factors were determined by examining each 

other, namely drainage density, LS Factor, lineament 

density, elevation, curvature, rainfall and MRVBF. The 

areas of high groundwater potentiality are located in the 

downstream of our region and in depressions with fractures 

and permeable soil, to promote groundwater recharge. The 

opposite is true for drainage density, distance to the river and 

water index by normalized difference.  

 

Therefore, the topographic and climatic factors are most 

critical for groundwater storage in the Ouled Bousbaa area 

(Fig. 8). It is also worth mentioning that our study draws the 

intention on other factors (Vegetation index, slope, altitude, 

topographic moisture index) that have a significant impact 

on water storage32. The OCR-AUC validation model shows 

that both AMLs have good predictive accuracy with the 

ability to analyze a large database using maximum assembly 

of decision and classification trees9, 17. Therefore, this new 

study on mapping groundwater potential areas using 

machine-learning algorithms (RF and XGB) reveals a good 

predictive result, which implies the use of MLAs to have 

better modeling of groundwater potentiality. 

 

Conclusion 
Due to the increasing scarcity of water in recent decades, 

driven by inadequate management practices and the critical 

role of water in supporting economic development and 

population well-being, it is imperative to adopt innovative 

approaches, such as machine learning, to mitigate these 

impacts and to enhance water resource management.

 

 
Fig. 7: Boreholes location and productivity in the GW Potentiality maps (a) according to RF and (b) XGBoosting  
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Fig. 8: Analysis of Variable Importance 

 

This study aims to strengthen the understanding of 

groundwater systems to support effective management 

strategies that address population needs. Through detailed 

exploration, it seeks to identify optimal locations for 

implementing productive water drilling projects. The 

Random Forest (RF) and Extreme Gradient Boosting (XGB) 

algorithms were applied utilizing data associated with 13 

parameters influencing groundwater storage, alongside 

additional factors derived from geospatial datasets and water 

point inventory. These factors are incorporated into a 

machine-learning framework to implement innovative 

approaches leveraging advanced machine-learning 

algorithms. The results were validated using the Receiver 

Operating Characteristic (ROC) method by calculating the 

area under the curve (AUC).  

 

Additionally, the usability of the generated models was 

assessed using a database of well and spring flow rates. The 

final maps indicate that the study area exhibits significant 

groundwater potential, with 70% to 80% of the region 

classified as having high potential. These models serve as a 

crucial decision-support tool, enabling the identification of 

optimal areas for the implementation of future drilling 

projects.  

 

The results demonstrate that the models developed using the 

applied algorithms exhibit excellent performance. 

Specifically, the Random Forest (RF) algorithm achieved an 

AUC value of 0.995, while the Extreme Gradient Boosting 
(XGB) algorithm attained an AUC value of 0.99, 

highlighting their high predictive accuracy. Lithology, 

elevation and the LS factor have emerged as the most 

influential parameters in the groundwater potential 

modeling.  

 

The approaches employed in this study are cost-effective, 

demonstrating both reliability and accuracy in mapping 

groundwater resources. Furthermore, these methodologies 

can be adapted and applied to other regions to enhance the 

assessment of groundwater potential and to identify high-

potential areas. These models also serve as valuable tools for 

guiding the selection of suitable locations for drilling 

activities. 
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