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Abstract

Groundwater recharge is crucial for managing
freshwater resources and has become a global issue
due to climatic changes, particularly in arid and semi-
arid areas. This study uses machine-learning
algorithms  (MLA) to facilitate groundwater
potentiality mapping (GWPM) via spatial modeling.
For high precision, Extreme Gradient Boosting (XGB)
and Random Forest (RF) have been tested for GWPM.
For this reason, a database of springs and well
inventories have been prepared and randomly divided
into 75% for training and 25% for model validation.
GWPM is also statistically linked to various relevant
factors conditioning groundwater recharge including
LS factor, elevation, MRVBF, curvature, NDVI, NDWI,
TWI, drainage density, distance to the river, rainfall,
permeability and fault density.

Validating GWP models uses the receiver operating
characteristic curve (ROC-AUC). The results show
that RF (AUC=0,995) and XGB (AUC=0,990) are
included in excellent class based on the ROC curve
method. Furthermore, GWPMs are efficient techniques
for sustainable groundwater resource management.

Keywords: Groundwater potentiality, Ouled Bousbaa,
Machine-learning Algorithms, Random Forest, Extreme
Gradient Boosting.

Introduction

One of the primary objectives of development projects
globally is to ensure access to safe drinking water °°. In many
developing nations, groundwater is the preferred source for
supplying potable water due to its superior quality. As such,
a comprehensive understanding of groundwater storage and
reserves is essential to inform and optimize hydrogeological
exploration efforts'?>. Groundwater is a highly valuable
resource with a potential global need because of its
importance and intensive daily consumption34455155 |t
accounts for a large portion (about 96%) of all available
freshwater resources and may be most essential in arid
regions where there is little surface water?4°,

The detailed investigation of water scarcity through different

studies, warns that in the coming years, water scarcity could
affect 27 countries including Morocco?®3!. To preserve
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groundwater reserves in the face of depletion, natural and
artificial recharge of aquifers is gaining
importance®29.41.464860.62 - Groundwater potential modeling
has not gained much importance, unlike its prospective
modeling?. Exploration of groundwater potential areas
promotes the continuity of water resources and significantly
facilitates the preparation of a strategic plan to improve the
quality and management of groundwater resources®.
Innovative machine learning algorithms have been applied
in predictive modeling to develop highly accurate
models?6:36,

In addition to classical modeling methods, Random Forest
and XGB are powerful predictive modeling algorithms that
can adapt to different variables and handle missing values
and relationships between predictors'®>%’. The ROC curve is
used to compare and validate the predictive accuracy of
generated models. Machine learning is gaining widespread
popularity because of its ability to predict variables such as
groundwater potential, solely from historical data sets. The
goal is to equip communities and decision-makers with a
database and a collection of maps to manage drinking water
resources effectively.

Study Area

The Ouled Bousbaa basin is a vast Eocene-Cretaceous
synclinal area covered by Plio-Quaternary extending over an
area of about 4640 Km?2 (Fig. 1). Several aquifer systems
characterize this basin, limited to the south by the mountains
of the Western High Atlas, to the north by the Jarfa
Mountain, to the east by a tributary of the Oued Chichaoua
and to the west by the synclinal basin of Essaouira. The
Jurassic and the Cretaceous dominate respectively the north
and the south of the area, while the Eocene, the Mio-Pliocene
and the Quaternary are found in the central region. There are
also quaternary formations in the bed of the main river,
Tensift. The climate of the study area is arid in the plain and
semi-arid in the mountain parts. Ouled Bousbhaa has been
divided into several communes that are expanding or being
settled and have a large population in terms of water use.

Material and Methods

Material and Data: Groundwater mapping using machine-
learning algorithms requires a dataset and several techniques
for successful modeling (Fig. 2). In this study, a diagram of
1874 water points was randomly separated into two parts.
75% is used for model training and the remaining 25% is for
model validation?.
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Fig. 1: Geographical location of the study area Ouled Bousbaa
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Fig. 2: Flowchart of the methodology adopted in the present study
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A global digital elevation model (spatial resolution: 12.5
meters) was used to extract climatic and hydrologic
topographic parameters and SRTM (30-meter resolution)
and Landsat8 Operational Land Imager (OLI) collection-2
level-2 images were acquired via download from the United
States Geological Survey (USGS). Hydroclimatic data
consisting of annual rainfall from 1960 to 2016 and
streamflow from 1994 to 2016 was measured in the stations
owned by and near the study area. The utilization of remote
sensing and GIS technology enabled the pinpointing of
boreholes with minimal uncertainty, but additional
techniques were recommended, especially for water
exploration®’.

Several GIS software packages were used to process this
dataset. ENVI and g-gis software ere used for lineament
extraction and digitization while Arc-gis and Saga-gis are
used to make the different maps of groundwater storage
parameters to generate models representing groundwater
potential by adopting the programming language R
(Foundation for Statistical Computing).

Groundwater Inventory: Within the framework of this
study, an inventory graph of 1874 points was collected
generally based on reference to historical records of various
resources and a detailed site inspection. A random separation
of the entire groundwater and non-groundwater (spring)

Vol. 18 (12) December (2025)

database was grouped into 75% (1474 points) and 25% (404
points) as training and testing datasets (Fig. 3). The
distribution of this dataset covers almost the entire area of
Ouled Bousbaa, which favors the feasibility of modeling
with a low failure rate. The groundwater and non-
groundwater training datasets are used for model training,
while the testing datasets are devoted to the validation of
GPM model?.

Methodology of the study: Hydrological modeling of
groundwater potential requires the creation of a
hydrogeological database representative the study area
(morphology, geology, climatology etc.). The methodology
adopted in this study includes multiple phases which are
presented schematically in fig. 2. The approach begins with
the preparation of the water point inventory (boreholes,
springs etc.). Then the identification and classification of
factors related to the storage of groundwater were made and
their thematic maps were created based on sources of
available data (Hydrogeological, Climatic etc). These
factors are used to develop the groundwater potentiality
model to show the availability of water and how it can be
used. Then the production of these models by applying
approaches was based on machine learning algorithms.
Finally, the validation of the results was done using the ROC
method by calculating the air under the curve.
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Fig. 3: Location of datasets inventory analysed in this study (training and testing dataset)
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Preparation of Thematic Maps of conditioning Factors:
Thematic maps of causative factors were created by utilizing
Saga-gis, Envi, SNAP, arc-gis and g-gis software to extract
and collect a comprehensive database to produce final
models of groundwater potentiality. For this objective,
groundwater conditioning factors must be well chosen,
because of their direct influence on the predictive analysis of
machine learning algorithms®. Several variables were
targeted including topographic, geologic, hydrologic,
climatic and land cover factors (Fig. 4). Their thematic maps
are created using a shapefile to delineate the study area and
to apply a classification using the "unsupervised

Vol. 18 (12) December (2025)

classification" extension in a GIS environment® 4%, This
method aims to organize an image into several spectral
classes united and combined to give them a thematic
meaning®.

Methodology of Groundwater Potentiality Mapping
Random Forest: The researchers Breiman’ and Golkarian
et al*® introduced the RF algorithm as a classification and
regression system based on binary decision trees. It allows
for the analysis of many parameters through a statistical
approach®®4263 the creation of multiple trees from a random
bootstrap and using the RF algorithm parameters’ %,
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Fig. 4: Maps of the analysis of conditioning factors for groundwater recharge: (a) Elevatlon (b) MRVBF,
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(1) NDVI, (k) Fault density and (I) LS Factor
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It is also used to analyze nonlinear and hierarchical
interactions between response and explanatory variables,
using a huge database with good predictions for new
cases®®44, The RF algorithm requires tuning the number of
trees and variables and the maximum number of nodes as
follows?458;

h (xik), k=1,2,...n 1)

whee ik are factors that control groundwater storage and 1,
2,3,4,5,6,7,..nare input vectors x. The general errors in
modeling by the RF algorithm are determined as follows?’:

GE =Px,y (mg (x,y) <0) ()

where x and y are factors controlling groundwater storage
and mg is the margin function.

Extreme Gradient Boosting: The XGB algorithm was
developed by Chen and Guestrin'®, It is a recent application
of gradient boosting machines. XGB is used for
classification problems and also regression. It is often used
by researchers because of its high running speed'® and also
adjusts the modeling variables without affecting the
objective model based on boosting from machine learning*.
The execution of this algorithm starts by producing an initial
learner from the database of all groundwater conditioning
parameters. The process continues until the last indices to
make the final model'*. XGB also uses trials to reduce the
required computation time!4 3 furthermore when using a full
database. It can become stronger compared to other
algorithms. In the case of our study, to apply XGB, the caret
package is used in the software of statistical calculations R.

ROC Curve Validation and AUC Analysis: The accuracy
of the modeling predictions was confirmed by using a
validation database to evaluate the results of the applied
algorithms?1621.22:43545 The ROC curve has been widely
used by researchers to evaluate the efficiency and
performance of machine learning models, as well as to assess
the analytical capability and strength of machine learning
algorithms. This evaluation is typically performed by
analyzing the area under the ROC curve (AUC), which
indicates the accuracy and high performance of the model.
When we talk about a high AUC value (AUC greater than
0.7), it automatically reflects the effectiveness of the
m0d9|35’47'52’53.

In this investigation, the ROC curve was used to evaluate the
predictive accuracy of the RF and XGB models. It is created
with specificity (true positive rate) and sensitivity (false
positive rate) on both the X-axis and Y-axis respectively, to
evaluate the accuracy of the model’s results of groundwater
recharge!20:25, Specific accuracy indices were created for
each element of the ROC curve to assess the accuracy of the
groundwater potential model*’. This ROC curve-based
validation approach identifies five ranks of area-under-the-
curve (AUC) zonation values to gain a better understanding
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of the performance level. According to Yesilnacar®, the
ROC_AUC category magnitudes are as follows: Excellent
(0.90 - 1.00), Good (0.80 - 0.90), Fair (0.70 - 0.80), Poor
(0.60 - 0.70), Fail (0.50 - 0.60).

Results

Application of RF and XGB Algorithms: The exploration
of the high groundwater potential areas in this study was
carried out using several techniques to collect a complete set
of data. Then, the created database is imported to the
statistical software R to apply the machine learning
algorithms Random Forest and XGB. After an essential
phase of preprocessing which facilitates and guarantees a
good predictive analysis with the least error rate, a reliable
groundwater potential model was used.

Validation of Groundwater Potential Models: According
to several researchers®23, the higher is the area under the
curve, the more accurate is the predictive analysis
(significant level 0.5) and is therefore, a successful
groundwater recharge model. The ROC curve is used to
determine the accuracy of the models by calculating the
AUC and the significant level of the ROC curve to validate
the accuracy of the models. The AUC site calculated using
the ROC curve confirmed the acceptability of both models
with good performance, as they show a value above 80%
indicating the accuracy of the model prediction. The
groundwater potential modeling results are statistically
significant in this study. The models RF and XGB performed
better in the test, their AUCs are 0.995 _ 0.990 (Fig. 5).

Groundwater Potential Maps: The groundwater
potentiality maps of the two models for the Ouled Bousbaa
region were classified into five categories with the method
of classification of natural breaks according to their potential
in zones: Very low, Low, Moderate, High, Very high.

The present model, which was generated utilizing the
Random Forest algorithm, demonstrates that areas with a
significant and elevated groundwater potential comprise the
majority of the area (ranging from 60% to 65%) and are
generally situated in the central part of the basin, at the level
of the basin and further downstream, north of Ouled
Bousbaa. Although the areas with low and very low
groundwater potential cover a relatively small portion of the
region (30%), they are situated in the upstream areas,
characterized by steep slopes and high runoff, which limits
infiltration (Fig. 6a).

The groundwater potential models created using the
advanced XGB algorithm demonstrate that areas of very
high to high potential cover a large portion of the study area,
with a significant concentration in the northern part of Ouled
Boushbaa. In contrast, regions with very low to low
groundwater potential are primarily situated in the southern
part, characterized by mountainous terrain and pronounced
relief (Fig. 6b).
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Table 1
Parameters of the used machine learning algorithms for GWPM
Model Description of the parameters of the algorithms
RF Number of Tree-500, Node size-13, Seed-10, Importance-True
XGBoost Number of integration-200, max depth-6, minim number-2, Learning rate-0.3,
Subsample-1
XGBoost Validation Random Forest Validation
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Fig. 5: Validation of Groundwater Potentiality Maps using ROC
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Confirmation of the Usability of Groundwater Potential analysis reveals that the flow rates of both springs and wells
Models: The validation of the groundwater potential models correlate strongly with the groundwater potential classes
was conducted by comparing the coordinates of water points identified in the generated models. Specifically, springs

and springs, which were categorized into three distinct exhibiting high flow rates are predominantly situated in
intervals based on their flow rates. A comprehensive high-potential zones, while those with lower flow rates are
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generally found in low-potential areas, with only a few
exceptions (Fig. 7). Therefore, according to the analysis of
the projected boreholes on the final models,

- 80% of the wells and springs with high flow rates are
located in areas of high to very high potential

- 20% to 25% of the wells with low flow rates are located in
areas of low to medium potential

As a result, the models developed are satisfactory according
to the test of confirming exploitability by springs and wells
flow rates.

Discussion

The global scarcity of groundwater reserves is generally
related to resource accessibility and management, implying
a global need to accurately identify potential areas using
algorithmic prediction. This is to cope with the water stress
that is expected to affect most of the world's inhabitants in
the coming years®. In this study, the problem to solve is the
accurate identification of potential groundwater areas using
dual machine learning algorithms including RF and XGB.
The effective factors were determined by examining each
other, namely drainage density, LS Factor, lineament
density, elevation, curvature, rainfall and MRVBF. The
areas of high groundwater potentiality are located in the

Vol. 18 (12) December (2025)

downstream of our region and in depressions with fractures
and permeable soil, to promote groundwater recharge. The
opposite is true for drainage density, distance to the river and
water index by normalized difference.

Therefore, the topographic and climatic factors are most
critical for groundwater storage in the Ouled Bousbaa area
(Fig. 8). It is also worth mentioning that our study draws the
intention on other factors (Vegetation index, slope, altitude,
topographic moisture index) that have a significant impact
on water storage®. The OCR-AUC validation model shows
that both AMLs have good predictive accuracy with the
ability to analyze a large database using maximum assembly
of decision and classification trees® 7. Therefore, this new
study on mapping groundwater potential areas using
machine-learning algorithms (RF and XGB) reveals a good
predictive result, which implies the use of MLAs to have
better modeling of groundwater potentiality.

Conclusion

Due to the increasing scarcity of water in recent decades,
driven by inadequate management practices and the critical
role of water in supporting economic development and
population well-being, it is imperative to adopt innovative
approaches, such as machine learning, to mitigate these
impacts and to enhance water resource management.
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This study aims to strengthen the understanding of
groundwater systems to support effective management
strategies that address population needs. Through detailed
exploration, it seeks to identify optimal locations for
implementing productive water drilling projects. The
Random Forest (RF) and Extreme Gradient Boosting (XGB)
algorithms were applied utilizing data associated with 13
parameters influencing groundwater storage, alongside
additional factors derived from geospatial datasets and water
point inventory. These factors are incorporated into a
machine-learning framework to implement innovative
approaches  leveraging advanced machine-learning
algorithms. The results were validated using the Receiver
Operating Characteristic (ROC) method by calculating the
area under the curve (AUC).

Additionally, the usability of the generated models was
assessed using a database of well and spring flow rates. The
final maps indicate that the study area exhibits significant
groundwater potential, with 70% to 80% of the region
classified as having high potential. These models serve as a
crucial decision-support tool, enabling the identification of
optimal areas for the implementation of future drilling
projects.

The results demonstrate that the models developed using the
applied algorithms  exhibit excellent performance.
Specifically, the Random Forest (RF) algorithm achieved an
AUC value of 0.995, while the Extreme Gradient Boosting
(XGB) algorithm attained an AUC value of 0.99,
highlighting their high predictive accuracy. Lithology,
elevation and the LS factor have emerged as the most

https://doi.org/10.25303/1812da080090

influential
modeling.

parameters in the groundwater potential

The approaches employed in this study are cost-effective,
demonstrating both reliability and accuracy in mapping
groundwater resources. Furthermore, these methodologies
can be adapted and applied to other regions to enhance the
assessment of groundwater potential and to identify high-
potential areas. These models also serve as valuable tools for
guiding the selection of suitable locations for drilling
activities.
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